6a^2-54=(a-3)(a+3)

Simple and best practice solution for 6a^2-54=(a-3)(a+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6a^2-54=(a-3)(a+3) equation:



6a^2-54=(a-3)(a+3)
We move all terms to the left:
6a^2-54-((a-3)(a+3))=0
We use the square of the difference formula
6a^2+a^2+9-54=0
We add all the numbers together, and all the variables
7a^2-45=0
a = 7; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·7·(-45)
Δ = 1260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1260}=\sqrt{36*35}=\sqrt{36}*\sqrt{35}=6\sqrt{35}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{35}}{2*7}=\frac{0-6\sqrt{35}}{14} =-\frac{6\sqrt{35}}{14} =-\frac{3\sqrt{35}}{7} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{35}}{2*7}=\frac{0+6\sqrt{35}}{14} =\frac{6\sqrt{35}}{14} =\frac{3\sqrt{35}}{7} $

See similar equations:

| Y-(3y-2y-5/10=1/6(2y-57)-5/3 | | 192=131-u | | -y+238=180 | | 2x22=7 | | 39=v/5+14 | | 8(x+8.9)=148.8 | | 170.4y+3=24.3 | | 80.4x+11=91.4 | | x^2+89=19x-1 | | 2x-14+3x=31 | | Y=-2(6+3y)+5 | | -18=-3(-7+13x | | 2.8+10x=7.94 | | 6(n+5)+n=2 | | 2(x-3)-5=-7 | | 7x-4=98 | | x+-4+5=7 | | 10a-7=25-6a | | 14x-6-7+10=-17 | | 8x+7+-4x=23 | | 14x-6-7x=-17 | | 14x-6-7=-17 | | 6x-4(2x-7)=28 | | n-(451+513)=630 | | s-(9.2+9.8)=2.5 | | 21=-6x+-3+-6 | | x^2+2(-3x)^2=76 | | 5x-3x^2=2+3x | | 9=2+x/3 | | 2w^2-56+6w=0 | | 2(x+3)-6=5x(2+4) | | 4x^2+1=32 |

Equations solver categories